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Translating from the rivers of Babylon  
to the coronary bloodstream

Barry S. Coller

I  was attracted to medicine because it 
affords the opportunity to integrate sci-
ence and humanism in service to oth-
ers. And I became attracted to a career in 
research when I realized that the applica-
tion of the scientific method to alleviate 
suffering from disease is one of our species’ 
proudest achievements. I feel privileged to 
be able to participate in this process and 
recognize that it carries with it enormous 
responsibilities (1).

The evidence of the power of the scien-
tific method to improve human health 
is compelling. In fact, since approxi-
mately 1840, people in the scientifically 
most advanced countries have enjoyed 
an amazing linear increase in life expec-
tancy at birth, with the life expectancy 
at birth for women increasing nearly  
40 years, from approximately 45 to 85 years  
(Figure 1A and ref. 2). During the first 
approximately 100 years, from 1840 to 
1940, increases in life expectancy were 
primarily due to improvements in sanita-
tion, access to clean water, early attempts 
at vaccination, and the introduction of 
medical microbiology, epitomized by the 
research of Dr. George M. Kober, who 
improved the safety of the milk supply in 
Washington, DC, as a model for the coun-
try. During this period, children were the 
major beneficiaries of these scientific 
advances, since they were especially vul-

nerable to contagious illnesses. During 
the last 70 years, fueled in large part by 
the growth in funding by the NIH in the 
US and on a smaller scale by similar gov-
ernmental agencies in other countries as 
well as the investments by pharmaceutical 
and, later, biotechnology companies, the 
increase in life expectancy has reflected 
medical innovations — new drugs, vac-
cines, devices, diagnostic and imaging 
technologies, surgical procedures and 
nonsurgical interventions, and disease 
prevention strategies that build on a solid 
base of evidence (3–5). Increasingly, the 
benefits have been enjoyed by the elderly, 
with the majority of benefit now going to 
those over 65 years of age and with the 
fastest growth in benefit going to those 
over 80 years of age (2).

As dramatic as these statistics are in their 
own right, they take on much more pro-
found import when considered against 
humans’ estimated 200,000 years on earth 
(6). Assuming a life expectancy at birth of 
25 years at the very beginning of the presci-
entific era, it took approximately 200,000 
years to gain approximately 20 years  
of life expectancy at birth or approxi-
mately 10,000 years to gain a single year 
of life expectancy. In contrast, through-
out the 170 years of the scientific era, it 
has required less than five years to gain a 
year of life expectancy at birth (Figure 1B). 
If the current trend continues, approx-
imately half of the children born in the 
United States in the year 2000 will live to 
100 years of age. The challenges before 
us are, therefore, clear: to sustain the 
improvements in life expectancy, reduce 
the burden of disability, and ensure that 
people the world over share equally in the 
benefits of better health.

Research is the mission of academic 
medical centers
As I started my medical career, I was told 
that medical schools had a tripartite mis-
sion, graphically depicted as a 3-legged 
stool — patient care, education, and 
research (Figure 2A and refs. 7, 8). Over 

the years, however, I came to the conclu-
sion that, while this construct was well 
intentioned, it was ill conceived because 
it implied that research was something 
separate from patient care and education 
or, worse yet, something one did if there 
were leftover resources on the margin. 
Since the scientific method has the poten-
tial to improve virtually all processes, I 
would propose an updated image in which 
research is the cushion that covers a four-
legged stool —patient care, education, 
community service, and global health 
(Figure 2B). Thus, research isn’t one of the 
missions of the modern academic medical 
center — it is the mission.

Academic medical centers need to apply 
the scientific method, embodied in rig-
orous research, to each of the legs of the 
stool. And they need to educate the pub-
lic that conducting research is an inte-
gral component of their commitments 
to the expert and compassionate care of 
individual patients and to the health of 
the communities they serve. Moreover, 
since medicine knows no geographical or 
political boundaries, it is important to 
highlight for young, idealistic people the 
power of science to advance the cause of 
social justice both locally and globally (9). 
Good health is an essential component of 
human dignity (10), and thus, by afford-
ing one the opportunity to develop new 
methods to prevent, diagnose, and treat 
disease, a career in biomedical science pro-
vides rewarding opportunities to achieve 
social justice. There are also social ben-
efits in eradicating endemic disease and 
improving health, as they can dramatically 
improve economic productivity and living 
standards and even result in the recapture 
of abandoned land (11, 12).

Translational research and the 
application of the scientific method 
to address a health need
The introduction of the Clinical and 
Translational Science Award (CTSA) 
program by the NIH in 2006 galvanized 
interest in translational research — and 
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incidentally opened up a verbal free-for-
all to define the term. Dr. Elias Zerhouni, 
the originator of the program, identified 
two critical components: the process of 
applying discoveries generated during 
laboratory research and in preclinical 
studies to the development of trials and 
studies in humans and enhancing the 
adoption of best practices in the com-
munity (13). Harkening back to the prin-
ciple that has motivated my own career, 
I define translational research as the 
application of the scientific method to 
address a health need (14). Translational 
research differs from basic science in 
that the goal of the former is to improve 
human health, whereas the goal of the 
latter is to increase human knowledge. 
Basic science advances as individuals 

test the predictions inherent in a field’s 
dominant scientific paradigms. If the 
studies are conducted carefully, they will 
inevitably result in the generation of new 
knowledge regardless of whether the data 
are consistent with, or at odds with, the 
current paradigm. Translational research, 
in contrast, is intrinsically riskier, since 
there are almost always major gaps in the 
knowledge one needs to translate data 
from experimental models into success-
ful interventions in humans — and many 
uncontrollable and unforeseeable events 
can derail a translational project up until 
the very end. Strategically, therefore, it 
is desirable to try to build basic science 
hypotheses into translational projects 
(along with the collection of sufficient 
data to test the hypotheses) so that if an 

intervention fails, there will be sufficient 
mechanistic information to understand 
why it failed.

To achieve success, I believe a transla-
tional investigator or investigative team 
needs three cardinal skills: (a) the ability 
to define a health need with the same pre-
cision as a basic science hypothesis; (b) the 
ability to design an assay that is reduction-
ist enough to interrogate one aspect of the 
system and that yet incorporates sufficient 
medical and biologic reality as to make it 
likely that if an intervention has a positive 
impact in the assay that the results will 
be able to be extrapolated to intact ani-
mals and humans; and (c) the ability to 
conceptualize a path to either regulatory 
approval or widespread adoption by the 
medical community (14, 15). Physician- 

Figure 1
Life expectancy. (A) Best-practice life expec-
tancy (that is, the best life expectancy reported 
by any country) and life expectancy for women 
in selected countries, 1840–2007. Reproduced 
with permission from the Lancet (2). (B) Life 
expectancy at birth for Homo sapiens from 
200,000 BCE to the present, separated into 
prescientific (200,000 BCE until 1840) and 
scientific (1840 until the present) eras.

Figure 2
The missions of the academic health center. The old three-legged stool model (A), composed of research, education, and patient care, needs to 
be updated (B) to emphasize the importance of using the scientific method to improve all of the institution’s missions. In addition, community ser-
vice and global health are important recent additions that provide opportunities for connecting the institution’s medical mission to the attainment 
of social justice. Reproduced with permission from Cornell University Press (15).
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scientists play outsized roles in the trans-
lational research process precisely because 
they have the ideal background to acquire 
and hone these skills. In fact, acquiring 
these skills is at the core of many of the 
CTSA educational programs, and it is the 
centerpiece of our programs at Rockefel-
ler University. My own career in platelet 
research provides one example of how 
these skills build on each other in pursuit 
of translational goals.

Blood platelet: the health needs
As a fourth-year medical student at New 
York University School of Medicine in 
1970, I developed a sense of the medi-
cal importance of blood platelets by my 
interactions with a patient with an artifi-
cial heart valve who suffered a disabling 
thrombotic stroke and with another 
patient who had the rare platelet disor-
der termed Glanzmann thrombasthenia 
(GT) (16). There was mounting evidence 
at that time that platelets played a role 
in thrombotic disease, but there were no 
specific therapies to inhibit platelets, and 
so their contribution remained unclear. 
On the other hand, the clinical impact 
of having platelets that could not clump 
together (aggregate) was clear, since 
patients with GT, which is inherited as 
an autosomal recessive trait, were known 
to suffer from a variably severe lifelong 
mucocutaneous hemorrhage (17). I went 
on to study patients with this disorder as 
a student with Dr. Marjorie Zucker and 
later at the NIH, the State University of 
New York at Stony Brook, Mount Sinai 
School of Medicine, and now at Rocke-
feller University. Pioneering studies by 
several laboratories in the 1970s identi-
fied the loss of 2 different proteins in the 
platelets of GT patients, initially termed 
GPIIb and GPIIIa (based on their mobil-
ity in sodium dodecyl sulfate-polyacryl-
amide gel electrophoresis) and later given 
the integrin receptor designations αIIb 
and β3, respectively (18, 19). It was also 
known that the platelets of patients with 
GT are partially deficient in the soluble 
plasma protein fibrinogen. From these 
clues, several groups put the pieces of the 
puzzle together and showed that αIIb and 
β3 form a heterodimeric complex that 
serves as a receptor for fibrinogen (as well 
as von Willebrand factor). Moreover, since 
fibrinogen and von Willebrand are both 
macromolecular proteins and contain 
more than one αIIbβ3-binding site, they 
can mediate platelet aggregation by bind-

ing simultaneously to αIIbβ3 receptors on 
two different platelets, creating a bridge 
between the platelets.

Blood platelets: developing and 
applying an assay
In 1980, we were able to support this 
model of platelet aggregation by devel-
oping a miniaturized assay to assess the 
ability of platelets to agglutinate fibrino-
gen-coated beads and showing that plate-
lets from patients with GT failed to aggre-
gate the beads (20). We further tested the 
model by screening for mAbs that could 
inhibit the agglutination of fibrinogen-
coated beads by platelets. In fact, all of 
the antibodies that inhibited the agglu-
tination reacted with the αIIbβ3 receptor 
(21). We went on to use these antibodies 
in translational studies in collaboration 
with Drs. Deborah French, Peter Newman, 
and Uri Seligsohn on the diagnosis of GT, 
including prenatal diagnosis (18, 22–31). 
In particular, we studied a large number 
of patients from the Iraqi-Jewish popula-
tion living in Israel. This group has had a 
high rate of intragroup marriage because 
it existed in relative isolation in Babylonia, 
modern Iraq, from the time of its captivity 
in 586 BCE until its return to modern-day 
Israel in 1950–1951. They are the subjects 
of Psalm 137: “Beside the rivers of Bab-
ylon, we sat and wept as we thought of 
Jerusalem.” Thus, the relatively high rate 
of consanguinity within the group made 
it more likely that autosomal-recessive 
disorders like GT would become manifest.

We also used the antibodies in basic bio-
chemical studies and, ultimately, in collab-
oration with Dr. Timothy Springer and his 
colleagues, x-ray crystallographic analysis 
of the molecular mechanism of ligand 
binding to αIIbβ3 and the conformational 
changes in the receptor that accompany 
ligand binding (32).

We subsequently modified the fibrino-
gen bead assay for use in whole blood (33) 
and then worked with Dr. Robert Hillman 
and the scientists at Accumetrics to con-
vert it into an automated cartridge-based 
system (34). By activating platelets with 
different agonists, we were able to estab-
lish assays to monitor the antiplatelet 
effects of aspirin, clopidogrel, and αIIbβ3 
antagonists (reviewed in ref. 35). Recent 
meta-analyses indicate that there is an 
association between a poor antiplatelet 
response to clopidogrel, as measured by 
this assay, and the risk of subsequent vas-
cular events (36, 37).

Blood platelets: application 
of insights from patients with 
GT to patients with thrombotic 
cardiovascular disease and 
development of a path to regulatory 
approval of a new class of 
antiplatelet agents
While GT is a rare disorder, affecting 
approximately one person in a million, we 
wondered whether the insight we obtained 
from studying these patients might bear 
on the most common cause of death in 
the United States, ischemic cardiovascu-
lar disease due to thrombosis (38). Data 
obtained by many investigators during 
the 1970s and 1980s implicated platelets 
in this process, although their precise role 
remained uncertain. Clinical studies of 
aspirin, which had been previously shown 
to partially inhibit platelet aggregation, 
were initially equivocal, but a major 
meta-analysis in 1988 (39) suggested an 
important role in reducing thrombotic 
vascular events (reviewed in ref. 40). 
However, since aspirin has many other 
effects, it was not possible to unequivo-
cally ascribe its impact to its antiplatelet 
effects. In 1991, ticlopidine, a more potent 
antiplatelet agent that emerged from ran-
dom screening of organic compounds 
(41) and showed antithrombotic activity 
in animal models and clinical efficacy in 
a variety of thrombotic disorders (42), was 
approved for human use. Ticlopidine’s 
mechanism of action, namely inhibition 
of the platelet P2Y12 ADP receptor, was 
unknown at the time and would only be 
discovered in 2001 (43).

During this same period, studies by many 
groups established the central paradigm of 
platelet physiology in which, under normal 
conditions, platelets circulate in an unac-
tivated state and do not interact with the 
blood vessel wall because the endothelium 
produces two potent soluble inhibitors 
of platelet activation, prostacyclin (PGI2) 
and nitric oxide (NO), and contains an 
enzyme (CD39) that can degrade ade-
nosine diphosphate (ADP), a potent plate-
let agonist that is released from activated 
platelets (NO, PGI2, CD39) (44). Vascular 
injury, which may pose a threat of hemor-
rhage, results in the exposure of proteins 
that are either in the subendothelial space 
and/or deposited from plasma, including 
von Willebrand factor and collagen, for 
which platelets have constitutively active 
receptors, including the GPIIb/IX complex 
for the former and both GPVI and α2β1 for 
the latter (45–47). This results in platelet 
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adhesion, which is then followed by plate-
let activation, augmented by the synthesis 
and/or release from platelets themselves of 
potent agonists, including thromboxane A2 
and ADP, and the conversion of the αIIbβ3 
receptor into a conformation with high 
ligand-binding affinity (19). This in turn 
results in the binding of plasma fibrino-
gen and/or von Willebrand factor and the 
recruitment of additional platelets to the 
growing platelet thrombus (that is, plate-
let aggregation) via the αIIbβ3 receptor–
mediated bridging mechanism. The plate-
lets then serve to initiate both coagulation 
and inflammation by helping to catalyze 
the generation of thrombin (itself a potent 
platelet activator) (48) and the recruitment 
of leukocytes through exposure of P selec-
tin (49), respectively.

As viewed against this background, the 
enormous increase in death from cardio-
vascular disease in the US between 1900 
and 1960 can be seen as the result of a 
number of factors, including the increase 
in longevity due to the reduction in deaths 
due to infectious diseases (thus allowing 
conditions that predispose individuals to 
atherosclerosis, such as hypertension and 
diabetes, to operate over a longer period 
of time), the increase in cigarette smoking, 
and the adoption of both a proatheroscle-
rotic diet and a more sedentary life style. 
The connection between underlying ath-
erosclerosis, which rarely leads to vasooc-
clusion by itself, and platelet-mediated 
acute thrombosis leading to vasoocclusion 
and ischemic infarction lies in the expo-
sure of platelet-reactive proteins when the 
atherosclerotic plaque erodes or ruptures 
(50–52). These processes lead to a major 
biologic misunderstanding, namely the 
platelet misinterpreting the exposure of the 
proteins, which are similar or identical to 
those exposed with vascular injury, as pos-
ing a risk of hemorrhage and thus respond-
ing with platelet adhesion and aggregation, 
leading to vasoocclusion. From an evolu-
tionary standpoint, it is likely that the risk 
of death from hemorrhage from birth on, 
and especially in the hemostatically chal-
lenging postpartum period, favored the 
survival of individuals with more active 
hemostatic symptoms. This natural selec-
tion process was highly adaptive for our 
ancestors, but became maladaptive in our 
modern age for individuals who develop 
atherosclerosis as they age. In fact, many 
of the advances in the therapy of cardiovas-
cular disease introduced in the second half 
of the 20th century were based on inter-

fering with the native hemostatic system 
with anticoagulants, antiplatelet agents, 
and thrombolytic agents. Collectively, 
these agents better balance the hemostatic 
system to minimize thrombotic events 
in those at higher risk, but at the cost of 
increasing the risk of hemorrhage.

The platelet αIIbβ3 emerged from 
studies of platelet function as a poten-
tial therapeutic target, and we and others 
demonstrated that mAbs and small mole-
cule inhibitors based on the Arg-Gly-Asp 
all-recognition sequence in adhesive glyco-
proteins (53) could prevent platelet throm-
bus formation in a number of animal 
models, including those in which aspirin, 
which is a less potent platelet inhibitor, 
failed to prevent thrombosis and vasooc-
clusion (54–59). We then worked with the 
scientists at Centocor to develop one of our 
mAbs, 7E3, into a therapeutic agent (60, 
61). Based on data from initial studies, 7E3 
was redesigned as a recombinant chimeric 
Fab fragment comprised of the murine 
variable regions and human IgG1 con-
stant regions (c7E3 Fab; abciximab) (62). 
Clinical studies led by Drs. Robert Califf 
and Eric Topol established the efficacy of 
abciximab therapy in patients undergo-
ing percutaneous coronary interventions 
(PCI) who were at high risk of developing 
ischemic complications (63), leading to 
its approval as adjunctive therapy in this 
population by the US FDA in December 
1994. This marked the first time an anti-
platelet agent was produced, developed, 
and approved based on an understanding 
of platelet physiology and the molecular 
target. Subsequent studies demonstrated 
its efficacy in patients undergoing stent 
placement and reduced the risk of hemor-
rhage associated with its use by decreasing 
the dose of heparin used in conjunction 
with abciximab (64). Two small mole-
cule inhibitors of αIIbβ3 were approved 
by the FDA in 1998: eptifibatide, which 
was developed by Drs. David Phillips and 
Robert Scarborough (65), and tirofiban, 
which was developed by Dr. Robert Gould 
and his colleagues (66). With the dramatic 
increase in the use of PCI and stent place-
ment, collectively, these agents have prob-
ably been used to treat at least 8,000,000 
people worldwide. A 2009 Cochrane 
review of 36 randomized controlled clin-
ical trials of these agents in 30,696 PCI 
patients found them to reduce the 30-day 
odds ratio for death by 24% (P = 0.01)  
and for death and myocardial infarction by 
35% (P < 0.000001) (67).

There have been many advances in PCI 
therapy since abciximab’s approval, includ-
ing the development of more potent thien-
opyridine compounds than ticlopidine 
(clopidogrel, prasugrel, ticagrelor) (68) that 
target the platelet P2Y12 ADP receptor, the 
direct antithrombin bivalirudin (68, 69), 
and drug-eluting stents (70). Since the 
αIIbβ3 antagonists have been associated 
with an increased risk of hemorrhage (67), 
and hemorrhage is associated with poor 
clinical outcomes (71), the indications for 
αIIbβ3 antagonists have narrowed to con-
ditions in which the thrombotic risk is very 
high. The majority of hemorrhagic compli-
cations associated with αIIbβ3 antagonist 
therapy occur at the catheter access site. 
Fortunately, the risk of access site bleeding 
can be dramatically reduced by using the 
radial artery rather than the femoral artery, 
and the radial approach is now becoming 
more common in the US (72).

αIIbβ3 antagonists are currently under 
investigation for several indications, 
including (a) intracoronary therapy of ST 
segment elevation myocardial infarction 
(STEMI) (73, 74); (b) immediate recanali-
zation of the culprit artery in STEMI with 
high thrombus burden, but delaying stent 
placement until the antiplatelet therapy 
has diminished the thrombotic potential 
(75, 76); (c) reducing the risk of throm-
botic complications of PCI in patients who 
do not have a good response to clopidogrel 
(77, 78); (d) bridging therapy for patients 
with recently placed coronary artery stents 
who need to undergo surgery during the 
interval between when they stop thieno-
pyridine medication and shortly before 
surgery (79); (e) treating acute thrombotic 
complications of detachable coil emboliza-
tion of cerebral aneurysms (80); and (f) very 
early treatment of STEMI, prior to hospi-
talization, to arrest the thrombotic process 
and thus prevent progression to myocar-
dial necrosis and infarction (aborted myo-
cardial infarction) (81).

The last experimental use is of partic-
ular interest because, in contrast to the 
dramatic decrease in in-hospital mortality 
caused by STEMI over the past 40 years, 
there has been much less success in reduc-
ing prehospital mortality (82). In fact, 
more than one-half of the deaths from 
coronary heart disease in the US occur in 
the prehospital phase (82). Prehospital 
cardiovascular deaths, many of which are 
due to myocardial infarction, account for 
more than 350,000 deaths each year in the 
US (83). By comparison, death due to can-
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unleashed translational opportunities for 
academic investigators that were unthink-
able when I began my career.

I also recognize how fortunate I have 
been to be able to sustain a career as a phy-
sician-scientist. The synergism that comes 
from integrating basic science with clinical 
medicine is extremely powerful, making it 
possible to use the lever of the scientific 
method to improve the health of people 
throughout the world. At the same time, I 
recognize the cognitive dissonance that can 
come from trying to “live” in two different 
cultures simultaneously. For example, cli-
nicians are used to acting rapidly to address 
their patients’ immediate needs, whereas 
basic scientists wait to weigh evidence very 
carefully and avoid rushing to judgment; 
clinicians are encouraged to conform to 
practice guidelines and standards of care, 
whereas basic scientists are encouraged to 
be bold in constructing hypotheses that 
overturn current paradigm; clinicians try 
to avoid error at all cost, since the patient’s 
life may be at stake, whereas basic scien-
tists view error as an inevitable element 
of scientific experimentation and learn 
that some of the greatest discoveries grew 
out of apparent “errors”; clinicians have a 
high degree of respect for medical author-
ity, whereas basic scientists are skeptical of 
authority and challenge it repeatedly; clini-
cians tend to focus on the unusual feature 
of an illness, whereas basic scientists hunt 
for principles that are generalizable even if 
it means excluding “outlier” values; clini-
cians are bound by the self-imposed obli-
gations of the physician’s oath, whereas 
basic scientists prefer the unfettered pur-
suit of scientific truth; clinicians recognize 
that they are unable to control the many 
variables that may confound their ability 
to establish cause and effect, whereas basic 
scientists constantly strive to improve their 
ability to control all of the variables in an 
experiment except the one under study. 
Finally, our species’ tribal origins place 
physician-scientists in the unenviable posi-
tion of having to choose which tribe they 
will align with on any given day by virtue 
of their binary choice to wear either clothes 
appropriate for caring for patients or jeans 
and a T-shirt! There are, however, also great 
benefits in living in two cultures, since it 
provides greater objectivity to assess the 
strengths and limitations of each culture 
and, most importantly, the chance to feel 
the energy, excitement, and satisfaction 
that comes from standing at the interface 
of two noble traditions.

cer of the lung, breast, and colon together 
accounted for approximately 257,000 
deaths in the US in 2004. Very early admin-
istration of αIIbβ3 antagonists has been 
shown to increase coronary artery blood 
flow (84) and decrease both infarct size 
and mortality in high-risk groups (85, 86). 
Speed of administration is of the essence, 
since the benefit decreases rapidly if the 
αIIbβ3 antagonist is administered more 
than one hour after the onset of symptoms 
(81). Thus, the variability in reported bene-
fits of early administration of these agents 
is paralleled by the length of time between 
the onset of symptoms and drug adminis-
tration (86, 87).

Since the three approved αIIbβ3 antago-
nists must be administered intravenously, 
it would be desirable to develop αIIbβ3 
antagonists that could be more easily 
administered in the prehospital setting. 
Previous attempts to develop orally active 
αIIbβ3 antagonists based on the Arg-Gly- 
Asp motif for secondary prevention of 
vascular events were all unsuccessful 
because the agents either lacked efficacy 
or were paradoxically associated with 
increased mortality (88, 89). Moreover, 
the agents were also associated with the 
development of thrombocytopenia in a 
small percentage of patients (90). It has 
been hypothesized that both the increased 
mortality and thrombocytopenia result 
from the agents inducing the receptor 
to adopt a high-affinity ligand-binding 
conformation(s) (88, 89). This could lead 
to paradoxical platelet aggregation and 
thrombosis when the plasma level of the 
drug declines and the drug leaves the 
binding site. Similarly, the mechanism of 
the thrombocytopenia may be related to 
the conformational change(s) induced by 
the agent exposing epitopes on the recep-
tor for which some individuals have pre-
formed antibodies (90, 91).

In an attempt to address the need for an 
αIIbβ3 antagonist that does not induce the 
active state of the receptor and that does 
not require intravenous administration, 
we performed a high-throughput screen 
of more than 30,000 compounds using an 
assay based on inhibition of platelet adhe-
sion to immobilized fibrinogen (92). We 
identified a single compound (RUC-1) that 
inhibited platelet binding and went on to 
show that RUC-1 specifically inhibits ligand 
binding to human αIIbβ3, but not the 
closely related αVβ3 receptor, by selectively 
interacting with the αIIb subunit (93, 94).  
RUC-1’s binding mechanism differs from 

that of eptifibatide and tirofiban in that 
it does not interact with a Mg2+ ion in 
the β3 metal ion-dependent adhesion site 
(MIDAS). In collaboration with Dr. Mor-
timer Poncz’s group, we demonstrated that 
RUC-1 is effective in inhibiting thrombus 
formation in both large blood vessels and 
in the small blood vessels of the microvas-
culature (93). We then made a number of 
congeners of RUC-1 in collaboration with 
Dr. Craig Thomas’ group and found that 
one of these, RUC-2, was approximately 
100-fold more potent than RUC-1 (95). 
X-ray crystallographic studies conducted in 
collaboration with Dr. Timothy Springer’s 
group demonstrated that RUC-2’s greater 
potency was due, in part, to its additional 
interaction with an amino acid (β3 Glu220) 
that ordinarily coordinates the Mg2+ ion 
in the MIDAS, resulting in the loss of 
the Mg2+ (95). Since fibrinogen binding 
to αIIbβ3 requires the interaction of the 
ligand with this MIDAS Mg2+, the recep-
tor cannot bind ligand in the presence of 
RUC-2. Moreover, since ligand interaction 
with the MIDAS Mg2+ is associated with 
inducing the receptor to adopt an activated 
conformation with high ligand-binding 
affinity, the inability of RUC-1 and RUC-2 
to interact with the MIDAS Mg2+ may pro-
vide a therapeutic advantage (32, 96, 97). 
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